Given an integer n and an integer start.
Define an array nums where nums[i] = start + 2*i (0-indexed) and n == nums.length.
Return the bitwise XOR of all elements of nums.
Example 1:
Copy Input: n = 5, start = 0
Output: 8
Explanation: Array nums is equal to [0, 2, 4, 6, 8] where (0 ^ 2 ^ 4 ^ 6 ^ 8) = 8.
Where "^" corresponds to bitwise XOR operator. Example 2:
Copy Input: n = 4, start = 3
Output: 8
Explanation: Array nums is equal to [3, 5, 7, 9] where (3 ^ 5 ^ 7 ^ 9) = 8. Example 3:
Copy Input: n = 1, start = 7
Output: 7 Example 4:
Constraints:
Array, Bit Manipulation
We can reduce the time complexity through mathematical operations.
Before we do that, let's review some characters of XOR:
( x ⊕ y ) ⊕ z = x ⊕ ( y ⊕ z ) (x⊕y)⊕z=x⊕(y⊕z) ( x ⊕ y ) ⊕ z = x ⊕ ( y ⊕ z ) ;
∀ i ∈ Z , 4 i ⊕ ( 4 i + 1 ) ⊕ ( 4 i + 2 ) ⊕ ( 4 i + 3 ) = 0 ∀i∈Z, 4i \oplus (4i+1) \oplus (4i+2) \oplus (4i+3) = 0 ∀ i ∈ Z , 4 i ⊕ ( 4 i + 1 ) ⊕ ( 4 i + 2 ) ⊕ ( 4 i + 3 ) = 0 ;
N ⊕ ( N + 1 ) ⊕ . . . ⊕ M = [ 1 ⊕ 2 ⊕ . . . ⊕ ( N + 1 ) ] ⊕ [ 1 ⊕ . . . ⊕ M − 1 ⊕ M ] N \oplus (N+1) \oplus ... \oplus M = [1 \oplus 2 \oplus ... \oplus (N+1)] \oplus [1 \oplus ... \oplus M-1 \oplus M] N ⊕ ( N + 1 ) ⊕ ... ⊕ M = [ 1 ⊕ 2 ⊕ ... ⊕ ( N + 1 )] ⊕ [ 1 ⊕ ... ⊕ M − 1 ⊕ M ] .
To make use of the 5th property of XOR, we mutate the required function to:
s t a r t ⊕ ( s t a r t + 2 i ) ⊕ ( s t a r t + 4 i ) ⊕ ⋯ ⊕ ( s t a r t + 2 ( n − 1 ) ) ⇔ ( s ⊕ ( s + 1 ) ⊕ ( s + 2 ) ⊕ ⋯ ⊕ ( s + n − 1 ) ) × 2 + e , s = ⌊ s t a r t / 2 ⌋ , e = n & s t a r t & 1 start⊕(start+2i)⊕(start+4i)⊕⋯⊕(start+2(n−1)) \Leftrightarrow (s⊕(s+1)⊕(s+2)⊕⋯⊕(s+n−1))×2+e, s=⌊ start/2 ⌋, e = n\&start\&1 s t a r t ⊕ ( s t a r t + 2 i ) ⊕ ( s t a r t + 4 i ) ⊕ ⋯ ⊕ ( s t a r t + 2 ( n − 1 )) ⇔ ( s ⊕ ( s + 1 ) ⊕ ( s + 2 ) ⊕ ⋯ ⊕ ( s + n − 1 )) × 2 + e , s = ⌊ s t a r t /2 ⌋ , e = n & s t a r t &1
In this formula, e is the lowest bit and it is equal to 1 if and only if n and start are both odd numbers.
To obtain t e m p = ( s ⊕ ( s + 1 ) ⊕ ( s + 2 ) ⊕ ⋯ ⊕ ( s + n − 1 ) ) temp = (s⊕(s+1)⊕(s+2)⊕⋯⊕(s+n−1)) t e m p = ( s ⊕ ( s + 1 ) ⊕ ( s + 2 ) ⊕ ⋯ ⊕ ( s + n − 1 )) , based on the property 6, we only need to compute [ 1 ⊕ 2 ⊕ . . . ⊕ ( s − 1 ) ] ⊕ [ 1 ⊕ . . . ⊕ ( s − n + 1 ) ] [1 \oplus 2 \oplus ... \oplus (s-1)] \oplus [1 \oplus ... \oplus (s-n+1)] [ 1 ⊕ 2 ⊕ ... ⊕ ( s − 1 )] ⊕ [ 1 ⊕ ... ⊕ ( s − n + 1 )] . Note that the pattern of XOR of the first n numbers is n, 1, n+1, 0.
Finally, we return the recovered result temp * 2 + e.
Time complexity: O ( 1 ) O(1) O ( 1 )
Space complexity: O ( 1 ) O(1) O ( 1 )